
Rust From A Scripting Background
Documentation

Release 2016.02.22

PDXRust Contributors

June 29, 2017

Contents

1 Welcome! 3

2 Today 5

3 Systems Components and Programming 7

4 Memory 9

5 CPU 11

6 Assembly Language 13

7 Compiled vs Interpreted Languages 15

8 Systems vs Application Programming 17

9 Systems vs Application Code 19

10 Rust vs Other Systems Languages 21

11 Debugging Rust vs Others 23

12 Safe vs Unsafe Rust 25

13 The Rust Ecosystem 27

14 Channels 29

15 Libraries 31

16 Rustaceans 33

17 Installation Options 35

18 Your First Rust Project 37

19 Let’s Write Rust! 39
19.1 Basic Syntax . 39
19.2 Scope Errors! . 39
19.3 Punctuation Errors! . 40
19.4 The compiler catches mistakes... 40

i

19.5 Hey, Pythonistas! . 40
19.6 Primitive Types . 41
19.7 Functions . 41
19.8 Functions have type signatures . 42
19.9 Functions example . 42
19.10 Errors returning values! . 42
19.11 Errors if you get the types wrong! . 43
19.12 Conditionals . 43
19.13 Error: You’ve got to return what you said you would . 43
19.14 Matching . 44
19.15 You can do things with match results . 44
19.16 Looping . 44
19.17 Errors with loops: Scope still matters . 45
19.18 Ownership & Borrowing . 45
19.19 The Rules . 45
19.20 The Obligatory Book Metaphor . 46
19.21 Borrowing Example . 46
19.22 Borrowing: Simple types are copy. 46
19.23 Borrowing: Non-Copy types . 47
19.24 Borrowing Errors: Can’t use after move . 47
19.25 What we skipped . 47
19.26 What next? . 48

ii

Rust From A Scripting Background Documentation, Release 2016.02.22

Follow Along: http://rust-from-a-scripting-background.readthedocs.org/en/latest/

Contents 1

http://rust-from-a-scripting-background.readthedocs.org/en/latest/

Rust From A Scripting Background Documentation, Release 2016.02.22

2 Contents

CHAPTER 1

Welcome!

You:

• Have coded a bit?

• Have used an interpreted language?

• Are interested in Rust!

3

Rust From A Scripting Background Documentation, Release 2016.02.22

4 Chapter 1. Welcome!

CHAPTER 2

Today

What you can’t get from the book:

• Context of why and when to use Rust

• Comfort with basic syntax and error messages

• Contacts + new friends

Note: Rust is an extremely feature-rich language and introductions are usually taught in 1-2 full days of workshops.
The best we can do in 1 hour is build your interest and motivation, and make sure you know what questions to ask as
you get involved.

5

Rust From A Scripting Background Documentation, Release 2016.02.22

6 Chapter 2. Today

CHAPTER 3

Systems Components and Programming

Note: Let’s make sure we’re all on the same page about some stuff you might never have needed to think about
before.

tl;dr, computers are dumb but compilers are smart.

https://people.cs.clemson.edu/~mark/uprog.html is a neat overview of very low-level stuff.

7

https://people.cs.clemson.edu/~mark/uprog.html

Rust From A Scripting Background Documentation, Release 2016.02.22

8 Chapter 3. Systems Components and Programming

CHAPTER 4

Memory

RAM is quick to access but impermanent

Disk is slower to access but more permanent

Stack & Heap are abstractions for how a program manages its own memory

(https://en.wikipedia.org/wiki/Data_segment#/media/File:Typical_computer_data_memory_arrangement.png)

9

https://en.wikipedia.org/wiki/Data_segment#/media/File:Typical_computer_data_memory_arrangement.png

Rust From A Scripting Background Documentation, Release 2016.02.22

10 Chapter 4. Memory

CHAPTER 5

CPU

• Read an instruction from the program, then

– Store and fetch bits from registers, or

– Do math on some bits that it has available, or

– Store and fetch bits from RAM and disk, then

– Read the next instruction

• Plus some optimizations

11

Rust From A Scripting Background Documentation, Release 2016.02.22

12 Chapter 5. CPU

CHAPTER 6

Assembly Language

• CPUs have various Instruction Set Architectures

• Instructions are represented by assembly language commands

• Compiler turns programming language into instructions valid for the target CPU

• Compilers & interpreters optimize code and guess what you meant. They’re usually right.

To write smaller and faster programs, you have to think harder about exactly what the CPU is doing.

13

Rust From A Scripting Background Documentation, Release 2016.02.22

14 Chapter 6. Assembly Language

CHAPTER 7

Compiled vs Interpreted Languages

Compiled:

• Transformed into machine code before execution

• Executable is usually platform-specific

• Some errors are caught during compilation

Interpreted:

• Transformed into machine code during execution

• Source is usually platform-agnostic

• Errors show up when you get there

Note: Choose a compiled language when:

• Speed/performance is essential

• Can’t afford runtime crashes

• Targeting an embedded platform with ~0 storage/memory

Choose an interpreted lanaguage when:

• You’re more fluent in it and need the code done fast

• Code performance isn’t essential

• Some cases of targeting multiple platforms

15

Rust From A Scripting Background Documentation, Release 2016.02.22

16 Chapter 7. Compiled vs Interpreted Languages

CHAPTER 8

Systems vs Application Programming

Systems programming: (assembly, C, C++, Rust)

• Hardware access & performance

• Interface between machine and applications

Applications programming: (Python, Ruby, Java)

• User-facing, higher-level languages

• Often interpreted

Note: Systems programming prioritizes speed and performance, and traditionally has expected programmers to
memorize all the rules for how not to make mistakes.

17

Rust From A Scripting Background Documentation, Release 2016.02.22

18 Chapter 8. Systems vs Application Programming

CHAPTER 9

Systems vs Application Code

(https://en.wikipedia.org/wiki/LAMP_%28software_bundle%29#/media/File:LAMP_software_bundle.svg)

19

https://en.wikipedia.org/wiki/LAMP_%28software_bundle%29#/media/File:LAMP_software_bundle.svg

Rust From A Scripting Background Documentation, Release 2016.02.22

Note: Systems code (ie kernel, drivers, etc) is pretty much all C today.

20 Chapter 9. Systems vs Application Code

CHAPTER 10

Rust vs Other Systems Languages

Other languages

• Expect the programmer to prevent errors

• Concurrency as a last resort

• Older = more supported platforms/libraries

• Minimal visibility into subtle bugs until you hit them

Safe Rust:

• Code which compiles is guaranteed to avoid certain errors

• Makes concurrency easier

• Points out everything that even looks like bugs

Note: If you’re just getting started and targeting a normal platform (or want to add support for your obscure favorite),
Rust is like an automated mentor

If you’re contributing to an existing code base in another language or hunting a job at a C++-only shop, the things you
learn from Rust will improve your code, but it might not be your best choice

Note: http://graydon2.dreamwidth.org/218040.html is a list of common systems programming “footguns” absent
from Rust

21

http://graydon2.dreamwidth.org/218040.html

Rust From A Scripting Background Documentation, Release 2016.02.22

22 Chapter 10. Rust vs Other Systems Languages

CHAPTER 11

Debugging Rust vs Others

Applications programming languages

• Most bugs are logic errors

Other systems languages:

• Find memory use errors (sometimes) after code compiles

• Logic errors are still around; fixing introduces memory use errors

Safe Rust:

• Code with memory use errors does not compile

• Bugs in safe Rust which compiles are more like those in applications programming

23

Rust From A Scripting Background Documentation, Release 2016.02.22

24 Chapter 11. Debugging Rust vs Others

CHAPTER 12

Safe vs Unsafe Rust

Note: Imagine that it’s possible to enumerate every valid program (valid = free from memory mismanagement bugs,
use-after-free errors, array out of bounds, etc.). The set of programs which the Rust borrow checker accepts is slightly
smaller, but guaranteed to be contained within, the set of all valid programs.

What happens when you want to write code that you can prove is valid, but the borrow checker won’t accept? Use the
unsafe keyword to take down the metaphorical guard rails for a small section of code.

When you’re starting out, try to write only safe Rust. In cases where you must use unsafe, be sure to understand why.

25

Rust From A Scripting Background Documentation, Release 2016.02.22

26 Chapter 12. Safe vs Unsafe Rust

CHAPTER 13

The Rust Ecosystem

Note: Now we’re on the same page about the basic concepts of systems programming, let’s take a high-level look at
some things you’ll need to know about Rust to start using it

27

Rust From A Scripting Background Documentation, Release 2016.02.22

28 Chapter 13. The Rust Ecosystem

CHAPTER 14

Channels

• Stable

• Beta

• Nightly

“The stable release channel will provide pain-free upgrades, and the nightly channel will give early adopters access to
unfinished features as we work on them.”

Note: http://blog.rust-lang.org/2014/10/30/Stability.html

29

http://blog.rust-lang.org/2014/10/30/Stability.html

Rust From A Scripting Background Documentation, Release 2016.02.22

30 Chapter 14. Channels

CHAPTER 15

Libraries

• Cargo is the package manager (pip, gem, npm, bower are package managers)

• Libraries are called crates

• http://doc.rust-lang.org/stable/book/crates-and-modules.html

31

http://doc.rust-lang.org/stable/book/crates-and-modules.html

Rust From A Scripting Background Documentation, Release 2016.02.22

32 Chapter 15. Libraries

CHAPTER 16

Rustaceans

• Find people on http://rustaceans.org/

• https://www.rust-lang.org/conduct.html applies to...

• https://users.rust-lang.org/ is the “mailing list”

• https://www.reddit.com/r/rust/

• https://twitter.com/rustlang

• irc.mozilla.org, #rust, #rust-beginners

• https://github.com/rust-lang/rust

• http://stackoverflow.com/questions/tagged/rust

33

http://rustaceans.org/
https://www.rust-lang.org/conduct.html
https://users.rust-lang.org/
https://www.reddit.com/r/rust/
https://twitter.com/rustlang
https://github.com/rust-lang/rust
http://stackoverflow.com/questions/tagged/rust

Rust From A Scripting Background Documentation, Release 2016.02.22

34 Chapter 16. Rustaceans

CHAPTER 17

Installation Options

Just want to try it out?

• https://play.rust-lang.org (online, no crates, easy to link)

Need one version, with Cargo?

• https://www.rust-lang.org/downloads.html

Need several versions?

• https://github.com/brson/multirust (name will eventually change to rustup)

35

https://play.rust-lang.org
https://www.rust-lang.org/downloads.html
https://github.com/brson/multirust

Rust From A Scripting Background Documentation, Release 2016.02.22

36 Chapter 17. Installation Options

CHAPTER 18

Your First Rust Project

$ cargo new myproject

OR

$ multirust run stable cargo new myproject

THEN

$ vim myproject/src/lib.rs

• https://areweideyet.com/

37

https://areweideyet.com/

Rust From A Scripting Background Documentation, Release 2016.02.22

38 Chapter 18. Your First Rust Project

CHAPTER 19

Let’s Write Rust!

http://rustbyexample.com/

http://doc.rust-lang.org/stable/book/

https://github.com/carols10cents/rustlings

https://github.com/ctjhoa/rust-learning

Note: This part is basically section 4 of The Book (http://doc.rust-lang.org/stable/book/syntax-and-semantics.html)
but skipping as much as possible.

Basic Syntax

// Main takes no arguments and returns nothing
fn main(){

// The function body is the *scope* inside these curly braces
// Create a variable. It owns a string.
let what_to_say = "Hello World";
// Meet print syntax
println!("This program says {}", what_to_say);

}

http://rustbyexample.com/primitives/literals.html

Note: basic_syntax.rs http://rustbyexample.com/primitives/literals.html

4.1. Variable Bindings 4.2. Functions 4.3. Primitive Types 4.4. Comments 4.32. Operators

Scope Errors!

fn not_main(){
let what_to_say = "Hello World";

}
fn main(){

println!("This program says {}", what_to_say);
}

39

http://rustbyexample.com/
http://doc.rust-lang.org/stable/book/
https://github.com/carols10cents/rustlings
https://github.com/ctjhoa/rust-learning
http://doc.rust-lang.org/stable/book/syntax-and-semantics.html
http://rustbyexample.com/primitives/literals.html
http://rustbyexample.com/primitives/literals.html

Rust From A Scripting Background Documentation, Release 2016.02.22

<anon>:5:42: 5:53 error: unresolved name `what_to_say` [E0425]
<anon>:5 println!("This program says {}", what_to_say);

^~~~~~~~~~~
<std macros>:2:25: 2:56 note: in this expansion of format_args!
<std macros>:3:1: 3:54 note: in this expansion of print! (defined in <std
macros>)
<anon>:5:9: 5:55 note: in this expansion of println! (defined in <std macros>)
<anon>:5:42: 5:53 help: see the detailed explanation for E0425
error: aborting due to previous error

Punctuation Errors!

fn main(){
let what_to_say = "Hello World"
println!("This program says {}", what_to_say);

}

<anon>:6:9: 6:16 error: expected one of `.`, `;`, or an operator, found `println`
<anon>:6 println!("This program says {}", what_to_say);

^~~~~~~

The compiler catches mistakes...

fn main(){
let what_to_say = "Hello World"
println!("Hello");

}

<anon>:4:13: 4:24 warning: unused variable: `what_to_say`,
#[warn(unused_variables)] on by default
<anon>:4 let what_to_say = "Hello World";

^~~~~~~~~~~

Hey, Pythonistas!

fn main(){let what_to_say="Hello World";println!
("This program says {}",what_to_say);}

fn
main
(

)
{
let what_to_say

=
"Hello World"
;
println
! (
"This program says {}"

40 Chapter 19. Let’s Write Rust!

Rust From A Scripting Background Documentation, Release 2016.02.22

, what_to_say
) ; }

Note: The only whitespace which matters is that which separates tokens. fnmain is different from fn main. Other
than that, the compiler doesn’t enforce any rules, though you can use https://github.com/manishearth/rust-clippy and
https://github.com/rust-lang-nursery/rustfmt for formatting and style guidance

Primitive Types

Note: Have you ever been using a language without a strong type system, and returned a string from a function where
you were expecting to get an int out? Rust forbids those bugs.

• signed integers

– i8, i16, i32, i64 and isize (pointer size)

• unsigned integers

– u8, u16, u32, u64 and usize (pointer size)

• floating point:

– f32, f64

• char: Unicode scalar values, like ‘a’, ‘𝛼’ and ‘∞’ (4 bytes each)

• bool: either true or false

• arrays, like [1, 2, 3]

• tuples, like (1, true)

http://rustbyexample.com/primitives.html

Things each type can do are in standard library docs, like http://doc.rust-lang.org/stable/std/primitive.bool.html

Note: Here we’re skipping book sections...

• 4.11. Structs

• 4.12. Enums

• 4.16. Vectors

• 4.17. Strings

Functions

http://doc.rust-lang.org/stable/book/functions.html

• Return using return or bare final expression

• If a function returns something, -> tells the type

• Methods are functions attached to objects

19.6. Primitive Types 41

https://github.com/manishearth/rust-clippy
https://github.com/rust-lang-nursery/rustfmt
http://rustbyexample.com/primitives.html
http://doc.rust-lang.org/stable/std/primitive.bool.html
http://doc.rust-lang.org/stable/book/functions.html

Rust From A Scripting Background Documentation, Release 2016.02.22

Functions have type signatures

• Every type slot is filled by the name of a type

• You can make your own types. http://rustbyexample.com/custom_types.html

Functions example

fn and(x: bool, y: bool) -> bool{
x && y

}
fn another_and(x: bool, y: bool) -> bool{

return x && y;
}
fn main() {

println!("{}", and(true, false));
println!("{}", another_and(true, false));

}

Note: function_and_operator.rs

4.15. Method Syntax 4.24. Universal Function Call Syntax

Errors returning values!

fn and(x: bool, y: bool) -> bool{
x && y;

}
...

42 Chapter 19. Let’s Write Rust!

http://rustbyexample.com/custom_types.html

Rust From A Scripting Background Documentation, Release 2016.02.22

<anon>:1:5: 3:6 error: not all control paths return a value [E0269]
<anon>:1 fn and(x: bool, y: bool) -> bool{
<anon>:2 x && y;
<anon>:3 }
<anon>:1:5: 3:6 help: see the detailed explanation for E0269
<anon>:2:15: 2:16 help: consider removing this semicolon:
<anon>:2 x && y;

^
error: aborting due to previous error

Errors if you get the types wrong!

fn and(x: bool, y: bool) -> bool{
return 3;

}
...

<anon>:2:15: 2:16 error: mismatched types:
expected `bool`,

found `_`
(expected bool,

found integral variable) [E0308]
<anon>:2 return 3;

^
<anon>:2:15: 2:16 help: see the detailed explanation for E0308

• The detailed explanation links are helpful. https://doc.rust-lang.org/error-index.html#E0308

Conditionals

fn and(x: bool, y: bool) -> i32{
if x && y {

return 3;
}
return 0;

}

Error: You’ve got to return what you said you would

fn and(x: bool, y: bool) -> i32{
if x && y {

return 3;
}
// what if we don't do anything here?

}

<anon>:2:9: 4:10 error: mismatched types:
expected `i32`,

found `()`
(expected i32,

found ()) [E0308]

19.11. Errors if you get the types wrong! 43

https://doc.rust-lang.org/error-index.html#E0308

Rust From A Scripting Background Documentation, Release 2016.02.22

<anon>:2 if x && y {
<anon>:3 return 3;
<anon>:4 }
...

Matching

fn main() {
let number = 13;
// TODO ^ Try different values for `number`

println!("Tell me about {}", number);
match number {

// Match a single value
1 => println!("One!"),
// Match several values
2 | 3 | 5 | 7 | 11 => println!("This is a prime"),
// Match an inclusive range
13...19 => println!("A teen"),
// Handle the rest of cases
_ => println!("Ain't special"),

}
}

http://rustbyexample.com/flow_control/match.html

You can do things with match results

fn main() {
let boolean = true;
// Match is an expression too
let binary = match boolean {

// The arms of a match must cover all the possible values
false => 0,
true => 1,
// TODO ^ Try commenting out one of these arms

};

println!("{} -> {}", boolean, binary);
}

http://rustbyexample.com/flow_control/match.html

Looping

fn main() {
// `n` will take the values: 1, 2, ..., 100 in each iteration
for n in 1..101 {

if n % 15 == 0 {
println!("fizzbuzz");

} else if n % 3 == 0 {
println!("fizz");

44 Chapter 19. Let’s Write Rust!

http://rustbyexample.com/flow_control/match.html
http://rustbyexample.com/flow_control/match.html

Rust From A Scripting Background Documentation, Release 2016.02.22

} else if n % 5 == 0 {
println!("buzz");

} else {
println!("{}", n);

}
}

}

http://rustbyexample.com/flow_control/for.html

Note: 4.5. if 4.6. Loops 4.13. Match 4.14. Patterns 4.21. if let

Errors with loops: Scope still matters

fn main() {
// `n` will take the values: 1, 2, ..., 100 in each iteration
for n in 1..101 {

...
}
println!{"{}", n}

}

<anon>:14:24: 14:25 error: unresolved name `n` [E0425]
<anon>:14 println!{"{}", n}

^
<std macros>:2:25: 2:56 note: in this expansion of format_args!
<std macros>:3:1: 3:54 note: in this expansion of print! (defined in <std
macros>)
<anon>:14:9: 14:26 note: in this expansion of println! (defined in <std
macros>)
<anon>:14:24: 14:25 help: see the detailed explanation for E0425

Ownership & Borrowing

• Zero-cost abstraction, checks done at compile time don’t slow your code

• A variable binding owns its value. Sometimes it’s ok to let others read or write that value, other times it isn’t.

• There is a ‘data race’ when two or more pointers access the same memory location at the same time, where at
least one of them is writing, and the operations are not synchronized.

http://doc.rust-lang.org/stable/book/ownership.html

http://doc.rust-lang.org/stable/book/references-and-borrowing.html

The Rules

First, any borrow must last for a scope no greater than that of the owner.

Second, you may have one or the other of these two kinds of borrows, but not both at the same time:

• one or more references (&T) to a resource,

19.17. Errors with loops: Scope still matters 45

http://rustbyexample.com/flow_control/for.html
http://doc.rust-lang.org/stable/book/ownership.html
http://doc.rust-lang.org/stable/book/references-and-borrowing.html

Rust From A Scripting Background Documentation, Release 2016.02.22

• exactly one mutable reference (&mut T).

(http://doc.rust-lang.org/stable/book/references-and-borrowing.html)

The Obligatory Book Metaphor

• I have a notebook

• I can show it to several friends at once, so they can all read it

• OR I can give it to one friend and they can write in it

• BUT nobody else can read it while anyone is writing in it

• AND if I give it away, it becomes theirs now, and I don’t have it any more

What if we broke those rules?

• What if 2 of us try to write at the same time?

• What if someone tries to write while you’re reading it?

Borrowing Example

fn borrow_int(borrowed_int: &i32) {
println!("I borrowed the int {}", borrowed_int);

}

fn main() {
let my_int : i32 = 42;
borrow_int(&my_int);
println!("I still have my int. it's {}.", my_int)

}

http://rustbyexample.com/scope/borrow.html

Note: (~10mins)

4.7. Ownership 4.8. References and Borrowing 4.9. Lifetimes 4.26. const and static 4.10. Mutability

Borrowing: Simple types are copy.

fn main() {
let immutable_int = 42;
println!("immutable_int contains {}", immutable_int);
let mut mutable_int = immutable_int; // this makes a copy
println!("mutable_int contains {}", mutable_int);
println!("immutable_int contains {}", immutable_int);
mutable_int = 5;
println!("mutable_int now contains {}", mutable_int);

}

46 Chapter 19. Let’s Write Rust!

http://doc.rust-lang.org/stable/book/references-and-borrowing.html
http://rustbyexample.com/scope/borrow.html

Rust From A Scripting Background Documentation, Release 2016.02.22

immutable_int contains 42
mutable_int contains 42
immutable_int contains 42
mutable_int now contains 5

Borrowing: Non-Copy types

• It wastes memory to make a copy of a more complex type, so we copy its

metadata.

fn main() {
let immutable = "I'm immutable!".to_string();
println!("immutable contains {}", immutable);
let mut mutable = immutable; //move the value, not copy
println!("mutable contains {}", mutable);
mutable = "I have been mutated".to_string();
println!("mutable now contains {}", mutable);

}

immutable_string contains I'm immutable!
mutable_string contains I'm immutable!
mutable_string now contains I have been mutated

Borrowing Errors: Can’t use after move

fn main() {
let immutable = "I'm immutable!".to_string();
let mut mutable = immutable; //move the value, not copy
println!("immutable contains {}", immutable);

}

<anon>:5:43: 5:52 error: use of moved value: `immutable` [E0382]
<anon>:5 println!("immutable contains {}", immutable);

^~~~~~~~~
...
<anon>:5:43: 5:52 help: see the detailed explanation for E0382
<anon>:4:13: 4:24 note: `immutable` moved here because it has type
`collections::string::String`, which is moved by default
<anon>:4 let mut mutable = immutable; //move the value, not copy

^~~~~~~~~~~

What we skipped

• Unsafe

• Concurrency

• File IO

• Using crates

• The type system

19.23. Borrowing: Non-Copy types 47

Rust From A Scripting Background Documentation, Release 2016.02.22

Note:

4.18. Generics 4.19. Traits 4.22. Trait Objects 4.23. Closures 4.27. Attributes 4.28. type aliases 4.29. Casting
between types 4.30. Associated Types 4.31. Unsized Types 4.33. Deref coercions 4.34. Macros 4.35. Raw
Pointers

What next?

http://rust-from-a-scripting-background.readthedocs.org/en/latest/

• Set up Rust

• Join us on IRC (#rust on irc.mozilla.org)

• Write some code!

– Contribute to the compiler? Mentored bugs at https://public.etherpad-mozilla.org/p/rust-curated

– Search GitHub issues for language:rust http://bit.ly/24C5JNH

– Do some exercises: https://github.com/carols10cents/rustlings

48 Chapter 19. Let’s Write Rust!

http://rust-from-a-scripting-background.readthedocs.org/en/latest/
https://public.etherpad-mozilla.org/p/rust-curated
https://github.com/carols10cents/rustlings

	Welcome!
	Today
	Systems Components and Programming
	Memory
	CPU
	Assembly Language
	Compiled vs Interpreted Languages
	Systems vs Application Programming
	Systems vs Application Code
	Rust vs Other Systems Languages
	Debugging Rust vs Others
	Safe vs Unsafe Rust
	The Rust Ecosystem
	Channels
	Libraries
	Rustaceans
	Installation Options
	Your First Rust Project
	Let's Write Rust!
	Basic Syntax
	Scope Errors!
	Punctuation Errors!
	The compiler catches mistakes...
	Hey, Pythonistas!
	Primitive Types
	Functions
	Functions have type signatures
	Functions example
	Errors returning values!
	Errors if you get the types wrong!
	Conditionals
	Error: You've got to return what you said you would
	Matching
	You can do things with match results
	Looping
	Errors with loops: Scope still matters
	Ownership & Borrowing
	The Rules
	The Obligatory Book Metaphor
	Borrowing Example
	Borrowing: Simple types are copy.
	Borrowing: Non-Copy types
	Borrowing Errors: Can't use after move
	What we skipped
	What next?

